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ABSTRACT

Time series of quasi–vertical profiles (QVPs) from 52 stratiform precipitation events observed with the

polarimetric X-band radar in Bonn, Germany (BoXPol), between 2013 and 2016 have been statistically an-

alyzed to infer microphysical processes shaping the dendritic-growth-layer (DGL) and melting-layer (ML)

signatures including surface rainfall. Specific differential phaseKDP in theML shows an average correlation of

0.65 with surface rainfall for these cases. Radar reflectivity decreases below theML by about 2 dB on average

while differential reflectivityZDR is hardly affected, which suggests rain evaporation as the dominating effect.

Estimated ice water content or snow water equivalent precipitation rate S in the DGL is correlated with

surface rain rates with lead times of 30min and longer, which opens a pathway for radar-based nowcasting of

stratiform precipitation tendencies. Trajectories of snow generated aloft down to the surface are constructed

from wind profiles derived both from the nearest radiosounding and radar-based velocity azimuth displays

(VAD) to narrow down the location at which the DGL-generated snow reaches the surface as rain. The lagged

correlation analysis betweenKDP in theDGL and reflectivityZH at that location demonstrates the superiority of

the VAD information. Correlation coefficients up to 0.80 with lead times up to 120min provide a proof of

concept for future nowcasting applications that are based on DGL monitoring. Statistical relations found in

our QVP dataset provide a database for estimating intrinsic polarimetric variables from the usual azimuth and

elevation scans within and in the vicinity of the ML.

1. Introduction

The benefits of polarimetric weather radars go far be-

yond the improvement of quantitative precipitation esti-

mation (QPE). Polarimetric observations also provide a

wealth of information on precipitation microphysics,

which can be exploited to improve also parameterizations

of numerical weather prediction models (NWP; e.g.,

Kumjian et al. 2014; Kumjian and Ryzhkov 2010; Xie

et al. 2016; Carlin 2018; Trömel et al. 2018). In par-

ticular, the parameterization of ice microphysi-

cal processes, which still are not treated adequately in

NWP models, may benefit from such observations. In

stratiform clouds, the most pronounced polarimetric

signatures apparent in vertical profiles are associatedwith

the dendritic growth layer (DGL) and the melting layer

(ML); both carry information about key ice microphysi-

cal processes such as depositional growth/sublimation,

aggregation, riming, and melting.

A generally accepted and evaluated numerical mi-

crophysical model explaining the radar characteristics

of the ML does not exist yet, most probably because

of still missing exhaustive observational statistics
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required for a solid characterization of the relation-

ships between polarimetric variables. Melting pro-

cesses are not well reproduced by bulk microphysical

models partly because of the typically missing mixed-

phase hydrometeor categories. Also, more sophisticated

models with spectral bin microphysics (SBM) that ex-

plicitly treat the mixed phase such as, for example, the

Weather Research and Forecasting (WRF) Model

coupled with the Hebrew University Cloud Model

(HUCM) SBM (e.g., Khain et al. 2011, 2012), do not

treat melting in a sufficiently realistic way. An ex-

ception is the 1D spectral bin model introduced by

Ryzhkov et al. (2014), which Trömel et al. (2014)

extended by taking into account accretion in order to

investigate the information content of the backscatter

differential phase d. Carlin and Ryzhkov (2017, 2019)

further included evaporation and sublimation, which

led to very realistic profiles of all simulated polar-

imetric variables in the ML. A detailed evaluation

study with observational statistics of polarimetric

variables is still in progress.

Forward (observation) radar operators are now

commonly used to aid the improvement of micro-

physical parameterizations in NWP models, because

model results thus transferred to virtual observation

can be directly compared with real observations (e.g.,

Trömel et al. 2018). A good model is then expected to

reproduce at least the statistical interrelations of po-

larimetric variables in the vertical profile in general

and in the DGL and ML in particular, which is the

central focus of this analysis. First, we review existing

techniques to retrieve high-quality vertical polarimet-

ric profiles and then summarize applications oriented

specifically toward DGL and ML.

a. Techniques to retrieve polarimetric radar profiles

Profiles of polarimetric variables that challenge

atmospheric models should be vertically highly re-

solved and take the decreasing values of polarimet-

ric variables such as differential reflectivity ZDR

and specific differential phase KDP with increasing

elevation angle into account. Wolfensberger et al.

(2016) exploit range–height indicator (RHI) scans

(scanned elevation angle at constant azimuth angle)

at ranges up to 5 km in their ML analysis in order

to limit effects of beam broadening and low signal-

to-noise ratio. They also discard elevations of 28 and
below to avoid ground clutter contamination and ele-

vations at and above 458 to avoid strong negative biases

in ZDR andKDP. Schneebeli et al. (2013) make use of all

elevations but correct for effects of the viewing geom-

etry; they first regrid the data into a Cartesian coordi-

nate system, extract five equally spaced vertical profiles

between 5- and 10-km horizontal distance from each

RHI, and derive empirical distribution functions of

polarimetric observables above the melting layer.

An alternative are quasi-vertical profiles (QVPs),

which are obtained via azimuthal averaging of the

data from plan position indicators (PPIs; azimuthal

scans at fixed elevation angles) at elevation angles

between 108 and 208. The azimuthal averaging (e.g.,

over circles of 55- or 110-km diameter at 5- or 10-km

height, respectively, when derived from 108 eleva-

tion scans) reduces the statistical errors of the radar

variables’ estimates. The effective vertical resolution

of QVPs depends on the radar radial resolution and

beamwidth, leading, for example, to about 100m at

2-km height and 270m at 5-km height for the polari-

metric X-band research radar in Bonn, Germany

(BoXPol; Diederich et al. 2015a,b). Kumjian et al.

(2013) first used QVPs to identify polarimetric sig-

natures of refreezing in winter storms, and Trömel

et al. (2013, 2014) to reliably estimate backscatter

differential phase dwithin theML.Ryzhkov et al. (2016)

demonstrated the multiple benefits of QVPs including

a more reliable detection of microphysical processes.

Tobin and Kumjian (2017) modified the QVP technique

to better resolve low-level signatures like the refreezing

signature; their so-called range-defined QVPs use PPIs

at several elevation angles and create inverse-distance-

weighted profiles from the different elevation angles

within a specified range from the radar location.

b. Radar observations of the DGL

TheDGL is usually found between2108 and2158Cand

plays a fundamental role in ice generation. Even though

the Bergeron–Findeisen process may take place within the

entire temperature range between2108 and2358C where

supercooled liquid water and ice crystals may coexist,

optimal conditions for ice growth are encountered

around the 2128C level where the difference between

saturation vapor pressures with respect to ice and to

water is maximal. Takahashi et al. (1991) let ice crys-

tals grow in a supercooled wind tunnel at temperatures

between23.88 and2228C and identified a pronounced

maxima of the mass growth rate at 2158C where

dendrites and hexagonal plates mostly grow and

at268C where needles is a dominant growing habit. In

the DGL, radar observations are mostly marked by

1) a distinct increase of reflectivity ZH with decreasing

height, 2) a maximum of ZDR and KDP, and 3) a min-

imum of the cross-correlation coefficient rHV [see

Kennedy and Rutledge (2011), Andrić et al. (2013),

Bechini et al. (2013), Williams et al. (2015), and Griffin

et al. (2018), among others]. The ZDR usually decreases

below the DGL either by aggregation via a decreasing
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bulk density and increasingly random orientations of

the hydrometeors, and/ or by riming, which tends to

make ice particles more spherical. At the same time

ZH increases by both processes, while the decreasing

bulk density of snowflakes in case of aggregation or

decreasing diversity of shapes in case of riming increases

rHV. Bands of enhanced KDP and strong downward in-

creases of ZH in this region often precede precipitation

intensification at the surface (Bechini et al. 2013; Trömel

et al. 2017).

The first systematic QVP-based study of polarimet-

ric DGL signatures is provided by Griffin et al. (2018)

for S-band observations from the operational WSR-

88D radars in the United States. They examined five

winter precipitation events and found a strong anti-

correlation between ZDR and KDP magnitudes; that is,

larger ZDR occurs with lower KDP and vice versa, and

an obvious dependence of the ZDR and KDP magni-

tudes on the cloud-top temperature (CTT). The high-

est KDP values have been observed during periods

with low ZDR in clouds with CTTs colder than 2308C.
The highest ZDR values occurred together with lower

KDP values in shallower and thus warmer CTTs

between2258 and2108C.As outlined byMoisseev et al.

(2015), KDP bands indicate an increased number con-

centration of ice crystals, which lead to aggregation.

Griffin et al. (2018) hypothesize that ice particles in high

concentration seeding the DGL from above have

more spherical shapes than locally generated den-

drites or hexagonal plates and mask the high ZDR

values inherent to the latter. Thus,KDP enhancements

near 2128C are more an indicator of ‘‘the onset of ag-

gregation, rather than an indicator of dendritic growth.’’

They conclude that the large number concentrations of

oblate, relatively dense ice particles required for ag-

gregation and KDP enhancement may result from either

seeder–feeder mechanisms more likely in deep clouds

or from ice multiplication.

c. Radar observations of the ML

The ML and its polarimetric signatures mirror mi-

crophysical processes above (in ice) and below

(in rain). Melting enhances ZH, ZDR, and KDP mainly

due to the higher refractive index of water compared

to ice, while rHV decreases strongly with the increasing

particle diversity and resonance effects. The detection

and characterization of the ML has been subject of

studies for decades (e.g., Smyth and Illingworth 1998;

Fabry and Zawadzki 1995; Giangrande et al. 2008;

Wolfensberger et al. 2016) motivated by its relevance

for quantitative precipitation estimation, hydrometeor

classification, and 08C isotherm retrieval (Baldini and

Gorgucci 2006). Fabry and Zawadzki (1995) provide

the most cited reference concerning nonpolarimetric

ML statistics. Wolfensberger et al. (2016) character-

ize polarimetric ML signatures in a large dataset of

X-band RHI scans in southern France, the Swiss Alps

and plateau, and over Iowa (United States) using a

new melting-layer detection method.

In our study, we apply the statistical analysis of po-

larimetric signatures in the DGL byGriffin et al. (2018)

in a different climate region (Europe, Germany), for a

different radar wavelength (X band), to a much larger

sample, and extend this analysis to the melting layer.

Further statistical relations found between variables

in the melting layer and its surrounding layers pro-

vide a database for future polarimetric vertical profiles

of reflectivity (VPR) techniques. For the first time,

QVPs are used also to quantify polarimetric ML

properties and to relate DGL and ML properties

to rain and snow estimates with implications for

nowcasting. We suggest a path for snow QPE and

nowcasting by estimating the ice water content

(IWC) or snow water equivalent precipitation rate S

in the DGL using KDP and/or ZDR in combination

with ZH—since the bulk of snow is formed in the

DGL (Hobbs and Rangno 1985)—and by projecting

this estimate down to the surface. This can also be

helpful when the estimation of S from radar observa-

tions near the surface might be precluded due to much

lower magnitudes of KDP and ZDR there with the in-

creasing randomness of orientation and the decrease

in snowflake density (Bukov�cić et al. 2018; Ryzhkov

et al. 2018).

The paper is organized as follows. Section 2 de-

scribes the database. Sections 3 and 4 focus on the

analysis of polarimetric variables in the DGL and the

ML, respectively. Section 5 follows with some appli-

cations and implications of the QVP dataset. Section 6

compares for the first time DGL-based rainfall re-

trievals with rain gauges at the location to which

the bulk of snow generated aloft has been advected

and thus provides a proof of concept for potential

nowcasting applications. Section 7 gives a summary

and conclusions.

2. Data

Our analysis is based on observations by BoXPol in-

stalled on a 30-m-tall building next to the Institute of

Geoscience and Meteorology at the University of Bonn

at 50.738N, 7.078E and 99.5m above MSL. For more

technical details, see Diederich et al. (2015a). BoXPol is

part of the Jülich Observatory for Cloud Evolution

currently developing into a Core Facility (JOYCE-CF),

which operates, in addition to BoXPol and many other
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remote sensing instruments, a second polarimetric

X-band radar (JuXPol) about 40 km to the northwest at

Forschungszentrum Jülich and provides scientists with

quality-controlled monitoring data of cloud and

precipitation processes (Löhnert et al. 2015). BoXPol

typically operates with a maximum range of 100 km

and 100-m radial resolution. The 5-min scan repeti-

tion schedule includes a volume scan with PPIs at

10 elevations, a birdbath scan (908 elevation), and one

RHI oriented toward JuXPol. The ZH and ZDR are

calibrated following Diederich et al. (2015a). The

data used in this study have not been corrected for

attenuation and differential attenuation, because of

still high uncertainties in the required parameters in

the ML.

The analysis is based on the 188 elevation PPI scans

processed with the QVP method into vertical profiles

of the polarimetric variables. Only data with a cross-

correlation coefficient rHV above 0.7 are used to calcu-

late their azimuthal median at all ranges. For every ray

the radial derivative of the differential phase shift FDP

is calculated with low-noise Lanczos differentiators to

estimate specific differential phase KDP (Vulpiani et al.

2012) before calculating its azimuthal median at all

ranges. The implementation in the open source library

‘‘wradlib’’ (https://wradlib.org; Heistermann et al. 2013)

with a window length of 21, corresponding to 2.1-km

slant range for BoXPol, is used for the FDP processing.

The choice of elevation angle 188 is a compromise, which

leads to slightly reduced ZDR andKDP from their values

at grazing-angle values [see elevation dependence for-

mulas in Griffin et al. (2018)], but still gives usable in-

formation on polarimetric variables with about 100- and

270-m vertical resolution at 2- and 5-km height, re-

spectively. Fifty-two stratiform events with time periods

between 1h 25min and 12h 35 min—in total, 215 h

20 min—have been observed with BoXPol during 2013–

16. The events were subjectively selected on the basis

of quick looks of spatially widespread and temporally

(.1.5 h) persistent coverages of significant reflectivities

ZH in the BoXPol measurement range. We did not

check whether these cases were also related to homo-

geneous rainfall distributions at rain gauges within

the QVP cone during the whole event. The 52 cases

have a mean rain rate of only 1.3mmh21, with the ma-

jority of rain rates varying between 0 and 2.8mmh21 (10th

and 90th percentiles, respectively, Fig. 6, bottom-right

panel). Thus, some events did not produce measured rain

at the gauges near BoXPol. These weighing-type rain

gauge observations, which are also used in section 3

in a comparison with the temporal evolution of DGL

signatures and derived snow rates, are provided by the

Landesumweltamt Nordrhein-Westfalen (the state agency

for environmental issues), the Erftverband (a regional

water management authority), and the city of Bonn (see

Diederich et al. 2015b for more information).

To account for horizontal advection of snow generated

in the DGL while falling (see section 5), we compare the

snow flux with the near-surface reflectivities [ZH(sfc)],

obtained from the 18-elevation PPI scan, at the projected

horizontal location. Snow trajectories are estimated

via two different pathways: 1) We used the wind pro-

file observed by the nearest radiosounding taken from

the University of Wyoming (http://weather.uwyo.edu/

upperair/sounding.html) assuming 1ms21 average ter-

minal velocity of snowflakes. Either the Essen, Germany,

radiosounding (51.408N, 6.968E) 74.93 km north of

BoXPol (usually available at 0000, 1200, and 1800 UTC)

or the Idar-Oberstein, Germany, sounding (49.708N,

7.338E) 116.18 km south of BoXPol is used depending on

event location and time. 2) We also used radar-derived

wind profiles derived from velocity azimuth displays

(VADs; Browning and Wexler 1968) of each volume

scan available every 5min and calculated the average

wind profile (and its variance) for each precipitation

event. The height ranges of the DGL and the cloud-top

temperature were derived from the temperature profile

of the closest radiosounding. For some events, QVPs are

complemented with the temperature forecasts of the

operational NWP COSMO Model (Consortium for

Small-ScaleModeling; Doms and Schättler 2002; Baldauf
et al. 2011) used by the German national weather service

(Deutscher Wetterdienst).

3. Statistics of polarimetric variables in the
dendritic growth layer

We show as an introductory example QVP time se-

ries of ZH, ZDR, rHV, and KDP for a rain event that

lasted several hours on 7 October 2014 including the

isotherms based on the forecast of the COSMOModel

(Fig. 1). This rain event exhibits several of typical

polarimetric DGL andML signatures, described in the

introduction section. Enhanced ZDR and KDP are ob-

served at temperatures between 2108 and 2158C to-

gether with stronger vertical downward increases of

ZH and rHV. Aggregation and riming reduce ZDR and

KDP below the DGL, while ZH and rHV increase ac-

cordingly. The ZH gradient b5 ›ZH/›z, an indicator for

ongoing aggregation and/or riming, is most pronounced

at times with high KDP (e.g., around 0300 UTC) and

concurrent with surface precipitation enhancement (see

stronger ZH in the column below the ML). Increases in

ZDRwith time occur at different heights as the concurrent

increases inKDP, as also reported by Andrić et al. (2013)

and Moisseev et al. (2015). At 0145 UTC, a region of
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increased ZDR extends down to the ML, which hints at

prevailing more pristine ice crystals in the column and

the absence of aggregation. Throughout the event, the

melting layer, indicated by enhanced ZH and ZDR and a

low rHV, largely follows the temporal evolution of the

08C isotherm around 2.7-km height. At 0300 UTC—and

also at the very beginning of the observation period

around 0000 UTC—a sagging of the melting layer is

observed concurrent with a more pronounced ZDR

decrease just above the ML compared to other times.

These signatures point to either riming accompanied

by enhanced fall velocities (e.g., Ryzhkov et al. 2016;

Kumjian et al. 2016) or to enhanced aggregation (Carlin

and Ryzhkov 2017). Around 0300 UTC, Doppler ve-

locities in the vertical scan (birdbath scan, once every

5min; not shown) directly above the ML vary between

1.5 and 2ms21, which points to relatively light riming on

the top of aggregation, which is likely a dominant pro-

cess responsible for sagging of the melting layer around

this time. The ZH and ZDR enhancements in the ML are

correlated, and rHV is lowest where riming or strong

aggregation takes place.

For the same event we estimated the mass-weighted

particle diameter Dm, the number concentration Nt and

the ice water content IWC above the ML (Fig. 2) fol-

lowing Ryzhkov et al. (2018):

D
m
520:11 2:0h (1)

with

h5

�
z
DP

K
DP

l

�1/2

, (2)

where l is the radar wavelength (mm) and zDP 5 zH 2
zV is the reflectivity difference at orthogonal polariza-

tions expressed in linear scale (mm6m23). The ice water

content (gm23) estimate

FIG. 1. QVPs of (top left) ZH, (top right) ZDR, (bottom left) rHV, and (bottom right)KDP with black ZH contour

lines (in all panels) observed with the BoXPol radar in Bonn at 188 elevation on 7 Oct 2014 between 0000 and

0330 UTC. The overlaid thick solid and dashed black lines (in all panels) show the 08, 258, 2108, and 2158C
isotherms from COSMO Model output at the BoXPol location.
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IWC(K
DP

,Z
dr
)’ 4:03 1023 K

DP
l

12Z21
dr

(3)

involves differential reflectivity also expressed in linear

scale

Z
dr
5 100:1ZDR : (4)

The logarithm of the number concentration of ice par-

ticles Nt (L
21) is estimated by

logN
t
5 0:1Z

H
2 2 logg2 1:33 (5)

with

g’ 0:78h2: (6)

The use of the ratio zDP/KDP in these retrievals mini-

mizes effects of the variability of shape and orientation

of ice particles, since both variables—zDP and KDP—are

proportionally affected by this variability (Ryzhkov et al.

1998). IWC estimated from ZH alone and the temperature

T (8C) via

logIWC(Z
H
)5 0:06Z

H
2 0:0197T2 1:7, (7)

following Hogan et al. (2006), is shown for com-

parison. We believe that the polarimetric estimate is

more reasonable, at least whereKDP shows significant

values, because IWC(ZH) in Fig. 2 mostly mono-

tonically increases toward lower levels following ZH,

which is not necessarily the case. However, the po-

larimetric retrievals cannot be applied in regions

with low signal-to-noise ratio at far ranges, where

noisy and unreliable KDP estimates are repeatedly

encountered, resulting in lacking information near

the cloud tops.

FIG. 2. Polarimetric ice microphysical retrievals of (top left) mean diameter Dm (mm), (top right) total number

concentration Nt (L
21), and (bottom left) IWC (gm23) as a function of KDP and zDP [Eqs. (1)–(6)] together with

blackZH contour lines (in all panels) observed with the BoXPol radar in Bonn for the event on 7 Oct 2014 shown in

Fig. 1. (bottom right) For comparison, the nonpolarimetric retrieval of IWC based onZH and temperature [Eq. (7)]

is shown. Overlaid thick solid and dashed black lines (in all panels) show the 08, 258, 2108, and 2158C isotherms

from COSMO Model output at BoXPol location.
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In the following, we present statistics of polarimet-

ric signatures in the dendritic growth layer and below

down to the melting layer derived from all 52 cases.

The histograms and empirical distribution functions of

ZDR and KDP in the DGL, here defined as the layer

between the 2108C and 2208C isotherms according

to the nearest radiosonde observation, together with

the vertical ZH gradient b of the 2-km-wide layer just

above the ML are shown in Fig. 3. For each single

profile we define ZDR(DGL) and KDP(DGL) as the

90th percentiles of all ZDR and KDP values as repre-

sentative maximal values forZDR andKDP in the DGL

following Griffin et al. (2018). The 90th percentile is a

good representation of the maximum values encoun-

tered in that layer with a low impact of single outliers.

The vertical slope of ZH above the ML b is computed

as

b5fZ
H
[ML

top
(F

DP
)1 2 km]2Z

H
[ML

top
(F

DP
)]g/2 km,

(8)

where MLtop(FDP) is defined as the height level above

the ML excursion of FDP caused by backscatter dif-

ferential phase changes d, where FDP starts increasing

with height again. Thus, seen from above MLtop(FDP)

is the lowest height level before excursions of the ML

in terms of any polarimetric variable start. For the

52 cases, the 10th and 90th percentiles of ZDR(DGL)

stay mainly between 0.18 and 0.75 dB and those of

KDP(DGL) stay between 08 and 0.398km21. The 10th

and 90th percentiles of b are 25.9 and 21.7 dB km21,

respectively, which is consistent with observations by

Fabry and Zawadzki (1995), Steiner et al. (1995),

Vignal and Krajewski (2001), Bellon et al. (2005), and

Matrosov et al. (2009).

Our ZDR(DGL) values, which stay below 1.5 dB, are

considerably lower than those found in Griffin et al.

(2018), Schrom et al. (2015), and Williams et al. (2015),

whichmight be attributed to different radar wavelengths

and climatological conditions. Schrom et al. (2015) an-

alyze X-band radar observations of winter storms in

northeastern Colorado during the Front Range Oro-

graphic Storms (FROST) project and find the largest

ZDR values around 3.5–5.5 dB associated with pro-

nounced low-level upslope flows, while the highest

KDP values are observed during periods of weaker

upslope flow. Griffin et al. (2018) observe ZDR(DGL)

values up to 6 dB for CTT between 2258 and 2108C in

WSR-88D S-band data, whereas at CTTs , 2258C
they observed ZDR(DGL) values between 0 and 2 dB.

They define CTT as the temperature at the first oc-

currence of210 dBZ starting from the top of the QVP.

We could not find a cloud-top temperature depen-

dence in our data. Note that our statistics are most likely

somewhat negatively biased (below 0.3 dB) because of

(differential) attenuation at X band in theML, for which

we did not correct in this study.

A possible climatological explanation for the lower

DGL ZDR could be a dryer upper troposphere over

central Europe compared to central United States. At

temperatures around2128C, dendrite growth is favored

by the largest difference between the saturation vapor

pressures over water and over ice. In the radiosoundings

for the 52 cases, supersaturation with respect to ice

occurs only in about one-half of the cases and stays at

moderate levels below 16%. Also, Bechini et al. (2013)

find over northwestern Italy mean values of maximal

ZDR in the DGL between 0.1 and 1.3 dB in hourly

FIG. 3. Histograms (dark-gray bars) and empirical cumulative

distribution functions (black lines) of the (top) vertical ZH gradient

b in the 2-km range above the bright band and (middle) ZDR(DGL)

and (bottom) KDP(DGL) in the DGL including mean values and

10th and 90th percentiles.
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profiles of 54 rainy days of C-band measurements with

90th percentiles between 0.5 and 2.5 dB. Schneebeli

et al. (2013) find in the eastern Swiss Alps an average

peak value of 0.965 dB with the 20% and 80% quan-

tiles at 0.35 and 1.45 dB, respectively. Thus, these and

our study suggest different upper-troposphere climate

regimes in central Europe than in the central United

States. The study by Vogel and Fabry (2018) performed

in Quebec, Canada, also shows ZDR(DGL) mostly be-

low 1.5 dB (their Fig. 7); they find a less pronounced

ZDR(DGL) peak in riming cases than in nonriming ca-

ses, but themost pronounced peaks for riming cases with

bimodal spectra.

Griffin et al. (2018) find for S band that KDP in the

DGL varies between 08 and 0.38km21 for cloud-top

temperatures between 2308 and 2558C but stays

between 20.18 and 10.18km21 for warmer CTT be-

tween 2308 and 2108C. Figure 4 (similar to Fig. 9 in

Griffin et al. 2018) also suggests an increasing KDP

with decreasing CTT in our data; however, it is re-

stricted to more shallow clouds since CTTs do not

fall below 2408C. Note that KDP at X band is larger by

about a factor of 3 than at S band. Griffin et al. (2018)

also find a negative correlation between ZDR and ZH

and a positive correlation between KDP and ZH in the

DGL; that is, higher ZDR occurs within lower ZH areas,

and larger KDP occurs within larger ZH regions in the

DGL. Their negative ZDR–ZH correlation cannot be

confirmed by our data (not shown), probably because of

the lack of high ZDR, but the positive correlation be-

tweenKDP andZH is observed (Fig. 4). Probably shallow

stratiform clouds never reaching the homogeneous nu-

cleation level are more common over Germany than

over the United States.

Figure 5 shows the distribution statistics of the ice

microphysical retrievals in the DGL from Eqs. (1)–(6)

with Dm(DGL), Nt(DGL), and IWC(DGL) defined as

the 90th percentiles at height levels between 2108
and2208C. TheDGL ice particle number concentration

Nt(DGL) roughly ranges from 3 to 183L21 (10th and

90th percentiles) with a mean value of 19L21. Themass-

weighted particle diameter Dm(DGL) mainly varies

between 0.8 and 2.8mm with a mean Dm(DGL) of

1.8mm. IWC varies between 0.1 and 0.9 gm23 with a

mean value of 0.7 gm23. These ice retrieval statistics are

in line with in situ measurements in stratiform clouds

with embedded convection in northern China analyzed

in Hou et al. (2014): at temperatures around 2108C
their maximum IWC stays below 1 gm23 with particle

number concentrations Nt below 100L21 and most

particles smaller than 2mm. In situ measurements

in a mesoscale convective system observed during the

Midlatitude Continental Convective Clouds Experiment

(MC3E) on 20 May 2011, however, indicate smaller Dm

values below 1mm with IWC below 0.5gm23 and Nt

below 50L21 at temperatures between 2108 and 2208C
(Ryzhkov et al. 2018). LowerDm, IWC, andNt values in a

mesoscale convective system in theUnited States relative

to stratiform events in Germany and China appear

somewhat unexpected, but the very few in situ measure-

ments in the DGL combined with their inherent un-

certainties do not yet permit definitive conclusions on

the reliability of ice microphysical retrievals presented

in Fig. 5.

According to the relation for the snow water equiva-

lent rate S by Bukov�cić et al. (2018),

S(IWC)’ 3:73 IWC, (9)

FIG. 4. Relationships between the 90th percentile of KDP in

the DGL and (top) cloud-top temperature or (bottom) 90th per-

centile of ZH in the DGL from the 52 stratiform events observed

for X band over Bonn. The panels are similar to Figs. 9b and 9d of

Griffin et al. (2018).
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our average IWC in the DGL of 0.7 gm23 (Fig. 5) cor-

responds to S 5 2.6mmh21, while the average rain rate

at the surface is R5 1.3mmh21 (cf. Fig. 6, bottom-right

panel). If we correct for evaporation effects below the

ML that cause on average a 2.21 dB decrease in ZH

(cf. Fig. 9, described in more detail below), the average

rain rate just below theML is about 1.8mmh21 applying

the constant Marshall–Palmer relation. The remaining

difference between 2.6 and 1.8mmh21 can be explained

by additional sublimation of ice within and above the

ML. Nevertheless, this relatively small difference

supports the argument that precipitation at the sur-

face (snow or rain) can be at least roughly estimated

from polarimetric measurements in the DGL. In

section 6 we expand on this by taking trajectories

of precipitation from the DGL to the surface into

account.

4. Statistics of polarimetric variables in the
melting layer

We adapted the ML detection strategy introduced by

Wolfensberger et al. (2016) for RHIs to QVPs. Ac-

cordingly, rHV and ZH are combined into a single pa-

rameter—the melting-layer factor MLF5 ZH(12 rHV)

with the range of ZH and rHV values first normalized

between 0 and 1 to give both variables a simi-

lar weight. The maximum and the minimum of the

vertical MLF gradient are taken—different from

Wolfensberger et al. (2016)—only as a first guess of

the top (MLtop) and bottom (MLbottom) of the melting

layer, respectively, which are then refined to nearby

locations in the profile where rHV returns to values

above 0.97 following Giangrande et al. (2008). The

ML depth is then defined as the height difference

between MLtop and MLbottom; the extremal values of

ZH, ZDR, and rHV are determined within this height

interval. Besides Wolfensberger et al. (2016) and

Giangrande et al. (2008) also other ML-detection

schemes exist, for example, by Bandera et al. (1998),

White et al. (2002), Matrosov et al. (2007), and Fabry

and Zawadzki (1995).

Because of significant contributions of the back-

scatter differential phase d to the total differential

phase shift FDP, a special processing is required to

estimate KDP and d in the ML, even at X band where

d is low or moderate (Trömel et al. 2014). Trömel et al.

(2013) connect values ofFDP just above and below the

ML with a straight line to estimate the vertical KDP

profile in the ML. Since excursions of FDP by d may

extend to higher altitudes than our MLtop estimate

based on rHV, we connect the straight line starting

with FDP at MLbottom with FDP at the height where it

starts increasing again [MLtop(FDP)]. The inherent

assumption of that strategy is a constant KDP within

the ML. The maximum d is then estimated as the

maximum difference between the FDP profile and the

straight line. Note that the limited vertical resolu-

tion and beam broadening might lead to somewhat

lower estimates of maximum ZH and ZDR, and higher

estimates of minimum rHV in the ML. Additional

variables characterizing the vertical profiles and in-

vestigated in the following are ZH and ZDR in snow

directly above the ML and in rain directly below the

FIG. 5. Histograms (dark-gray bars) and empirical cumulative

distribution functions (black lines) of the 90th percentile of (top)

Nt (L
21), (middle) Dm (mm), and (bottom) IWC (g m23) as a

function of KDP and Zdr [Eqs. (1)–(6)] in the DGL (between

2108 and2208C) including respective mean values and 10th and

90th percentiles.
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ML, which are again determined at the height levels

MLtop(FDP) and MLbottom, respectively:

Z
H
(snow)5Z

H
[ML

top
(F

DP
)] , (10)

Z
DR

(snow)5Z
DR

[ML
top

(F
DP

)] , (11)

Z
H
(rain)5Z

H
(ML

bottom
), and (12)

Z
DR

(rain)5Z
DR

(ML
bottom

): (13)

Figure 6 shows the histograms and empirical distri-

bution functions of the derived maximum ZH, ZDR, and

d; minimum rHV; and average KDP within the ML

derived from the QVP time series for all events.

Average values are provided together with the 10th

and 90th percentiles for all variables, which enables a

direct comparison with the ML statistics provided by

Wolfensberger et al. (2016) for Davos (Swiss Alps),

Ardèche (southern France), Iowa (midwestern United

States), and Payerne (Swiss Plateau; see their Fig. 15 and

FIG. 6. Histograms (dark-gray bars) and empirical cumulative distribution functions (black lines) of several

polarimetric variables in theML [(top left) maximalZH, (top right) maximalZDR, (middle left) meanKDP, (middle

right) minimal rHV, and (bottom left) maximal d] and (bottom right) measured rain rate at the surface. The

numbers in the panels indicate arithmetic means and the 10th and 90th percentiles of the respective distribution.
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Table 7). Statistics for Bonn are closest to those derived

for Davos (Swiss Alps) and to the combined distribution

from all four locations. The Davos and the Bonn dataset

show similar mean peak ZH values in the ML of around

31dBZ. The 10th and 90th percentiles are 22 and 39dBZ

for Davos and 24 and 38dBZ for Bonn. The minimal

rHV in Davos, however, reaches lower values with a

mean of 0.82 (0.93 for Bonn) and shows a higher vari-

ability. Average KDP in Davos and Bonn are very close

(0.208 and 0.198km21, respectively), however, with a

larger spread in the statistics for Davos. The 10th and

90th percentiles are 20.108 and 0.558km21 for Davos

and again narrower with 0.068 and 0.338km21 for Bonn.

Note, however, that Wolfensberger et al. (2016) esti-

mate KDP via Kalman filtering (Grazioli et al. 2014;

Schneebeli et al. 2014). The histogram of d (Fig. 6) is

consistent with earlier results by Trömel et al. (2013,

2014). The mean d is 1.88 for Bonn with the majority of

values ranging between 1.48 and 2.38; these values are

generally lower than the ones reported by Griffin et al.

(2018) at S band, which might be attributed to stronger

resonance scattering effects at X band (Trömel et al.

2014). The scatterplot of log10(KDP) versus maximal ZH

in the ML (Fig. 7, bottom-left panel) suggests an almost

linear relationship between both,

log
10
K

DP
(ML)522:41 0:05Z

H
(ML), (14)

which agrees with simulations with a 1D polarimetric

spectral bin model of the ML by Carlin (2018). This

consistency between radar observations and simulations

indirectly confirms the reliability of the procedure for

FIG. 7. Scatter density plots and correlations (top left)between maximal ZH in the ML and ZH in rain [average

difference ZH(ML) 2 ZH(rain) 5 7.68 dB], (top right) between ZH in snow just above the ML and ZH in rain

[average differenceZH(snow)2ZH(rain)523.9 dB], (bottom left) between log(KDP) in theML and maximalZH

in the ML, including the regression line in blue, and (bottom right) between brightband intensity ZH(ML) 2
ZH(rain) and maximal ZDR in ML, i.e., ZDR(ML). Shades of gray indicate the number of observations.
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obtaining an average KDP from the QVPs in the ML,

which is a key for the evaluation of microphysical models

of this region. As demonstrated by Carlin (2018), KDP is

proportional to a much-lower-order moment of the size

distribution of mixed-phase particles in the ML than ZH,

and it is very closely related to the cooling rate due to the

melting of snowflakes; no correlation exists between

the cooling rate and ZH(ML) and ZDR(ML), which are

higher moments of the size distribution. KDP is domi-

nated by the more numerous smaller-size particles, which

mostly contribute both to total mass and to cooling due to

melting and evaporation.

5. Potential applications and implications of
the dataset

a. Relations between polarimetric variables in the
ML and surface rain rate

Borowska et al. (2011) hint at a promising utilization

of KDP within the ML for a better QPE in areas of

brightband contamination, whichwe now can confirmby

the relatively strong correlation (Spearmans r 5 0.65)

between KDP(ML) and the measured surface rain rate

(Fig. 8, left panel). Similar correlation (Spearmans r 5
0.55) exists between the maximal ZH in the ML and the

surface rain rate (Fig. 8, right panel). In the following

we investigate more closely the relationships between

the polarimetric variables within the ML and the ML

thickness, the reflectivity in rain just below the ML

[ZH(rain)] and above it [ZH(snow)], the downward

slope of ZH directly above the ML (b), and the near-

surface rain rate to extract the QPE information

contained in the ML.

Fabry and Zawadzki (1995) analyze 600h of vertically

pointing X-band radar observations collected at the

Marshall Observatory radar site in Canada. According to

their statistics, the difference between maximal ZH in the

ML [ZH(ML)] and ZH(rain) varies between 5 and 12dB

with increasing differences for ZH(rain) . 19dBZ. Our

analysis reveals an average difference of 7.7dB with a

standard deviation of 1.9dB but indicates no significant

change/increase for higher dBZ values (Fig. 7, top-left

panel). The average difference between reflectivity in

the snow just above the ML and the rain below the

ML [ZH(snow) 2 ZH(rain)] is 23.9 dB (Fig. 7, top-

right panel) in our data with no clear dependence on

ZH(rain), while Fabry and Zawadzki (1995) found al-

most no difference for ZH(rain) , 25 dBZ and nega-

tive values only for higher ZH(rain).

Figure 7 (bottom-right panel) reveals a relationship

between brightband intensity quantified by ZH(ML)2
ZH(rain) and the peak ZDR in the ML [ZDR(ML)].

Note that positive correlations between the differ-

ence ZH(ML) 2 ZH(rain) and ZDR(ML) are most

pronounced for intense bright bands characterized by

higher ZH(ML), which usually indicate large melting

snow aggregates developing into large raindrops. Thus,

ZDR(ML) may be beneficial to parameterize Z–R re-

lationships. However, snow crystals formed in the

DGL and characterized by high ZDR without aggre-

gating as they fall to the melting layer (mostly due to

their lower concentration and absence of collisions),

may exhibit very high ZDR(ML) (up to 3–4 dB) com-

bined with low ZH(ML) within the melting layer. Such

situations are commonly characterized by very pro-

nounced polarimetric signatures in terms of ZDR(ML)

FIG. 8. As in Fig. 7, but for relationships between mean KDP and maximal ZH in the melting layer monitored with

5-min resolution and measured hourly rain rate (mmh21) at the surface.
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and rhv(ML) and the absence of a reflectivity ‘‘bright

band’’ (Ryzhkov and Zrnić 2019; see their Figs. 7.19

and 9.11).

b. Impact of evaporation on ZH and ZDR

Fabry and Zawadzki (1995) find no ZH(rain) gradient

below theML, whereas the Bonn data reveal an average

decrease of ZH toward the surface of 2.2 dB with a

standard deviation of 2.7 dB for average rain-layer

depths of 1.9 km (with standard deviation of 0.78 km).

The major part of the ZH decrease can be likely attrib-

uted to evaporation (Fig. 9, right panel), which depends

on relative humidity and droplet size (smaller drops

evaporate faster), while the slowly recovering transmit–

receive cell in the radar may only explain a minor con-

tribution. The 3-dB recovery time forBoXPol is estimated

to be around 1ms; taking into account that the mea-

surements defined as surface reflectivity aremeasured at

750-m slant range and correspond to 5-ms time delay, a

residual attenuation close to 2 dB is unlikely. According

to the closest radiosoundings the relative humidity

at 500-m height varied between 60% and 99% for the

52 events analyzed. A dominance of smaller drops in

stratiform rain in Germany or more humid conditions in

the lower atmosphere in Canada may explain the devi-

ating results from Fabry and Zawadzki (1995). For a

relative humidity of 60% and ZDR 5 0.27 dB the ex-

pected reflectivity reduction by evaporation within a

2-km-deep rain layer ranges between 2 and 5dBaccording

to 1D-simulation studies by Kumjian and Ryzhkov (2010)

and Xie et al. (2016). In contrast to the impact on ZH the

Bonn data also reveal a negligible impact of evaporation

onZDR (Fig. 9, left panel); the average difference between

ZDR in rain (just below the ML) andZDR at the surface is

only 0.01dB.

c. Correlation analysis toward a polarimetric VPR
technique

Since ZH is significantly higher in the ML than in the

rain below, ZH-based algorithms overestimate rain

without appropriate corrections when the radar resolu-

tion volume contains melting snow. These algorithms

usually underestimate surface rain rates, however, when

the radar beam overshoots the ML. In addition, radar

beam broadening with distance distorts the vertical

profiles of all radar observables and further exacerbates

surface rainfall estimation. Thus, a reliable detection

and quantification of the bright band including the cor-

relations between different polarimetric variables in

the ML is important for the mitigation of brightband

contamination in QPE. A possible approach to correct

brightband effects on QPE was suggested by Trömel

et al. (2017) and requires a profound correlation analysis

of polarimetric variables in the intrinsic vertical profiles

through the ML. Such correlations can be now obtained

from the QVPs, which provide a better height resolution

and reduced statistical errors (Fig. 10) when compared

with single beams within a PPI scan. The vertical re-

flectivity gradient above the ML (b) correlates with the

peak reflectivity in the ML [ZH(ML), top-left panel],

because b is a measure of aggregation, which increases

the particle size 2 and thus also ZH 2 toward the ML.

Since stronger reflectivity gradients b result in a stronger

underestimation of surface rain rates when corrections

FIG. 9. Relationships between (left) ZDR or (right) ZH in rain and near the surface. Surface reflectivities ZH(sfc)

and surface differential reflectivitiesZDR(sfc) are measured at 750-m slant range (8th radar bin of the 188 elevation
scan used for the QVPs). Here,ZH(rain) andZDR(rain) refer to the values in rain just below the melting layer. The

average difference ZDR(rain) 2 ZDR(sfc) 5 0.01 dB, and ZH(rain) 2 ZH(sfc) 5 2.21 dB.
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are not taken into account, b is central for the correction

of underestimated ZH at far ranges [see Fig. 2 in Trömel

et al. (2017) for illustration purposes].

Negative correlations exist between the minimum

rHV in the ML and the brightband intensity ZH(ML) 2
ZH(rain) (Fig. 10, top-right panel). Both our statistics

and those from Wolfensberger et al. (2016) indicate

that higher ZH(ML) also point to deeper MLs (Fig. 10,

bottom-left panel), whereas the latter statistics suggests

deeper MLs for given ZH(ML) compared to the Bonn

data (cf. the red and blue regression lines in the bottom-

left panel). Thus, regional differencesmust be taken into

account. Interestingly, high ZDR(ML) is found for both

high and very small ZH(ML) (Fig. 10, bottom-right

panel, indicates a concave-shaped scatter density plot).

As already mentioned before (see section 5a), small

ZH(ML) may occur in the absence of a reflectivity

bright band if small nonaggregated ice crystals with very

FIG. 10. Similar to Figs. 8 and 9, but showing the relationships (top left) between the vertical gradient inZH above

the ML (b) and maximal ZH in the ML and (top right) between brightband intensity ZH and minimum rHV in the

melting layer, including linear and quadratic fit (red and blue lines, respectively), (bottom left) between maximal

ZH in the ML and ML thickness, including the linear fit indicated as a red line and comparison with linear fit to

statistics by Wolfensberger et al. (2016) indicated as a blue line, and (bottom right) between maximal ZDR and

maximal ZH in the ML.
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nonspherical shape reach the ML. This nonmonotonic

relationship is even more pronounced in the S-band

radar data collected in the United States (E. Griffin

2019, personal communication).

Figure 11 puts the results of the study on the relative

heights of the extremes in theML by Trömel et al. (2013,

their Fig. 17) on a broader database. Simulations suggest

that the height of the peak ZH is above the rHV mini-

mum and the d maximum, with the latter two at ap-

proximately the same height. Our current analysis,

however, confirms first observational indications by

Trömel et al. (2013): ZH and d peak at about the same

height with the minimum of rHV below at distances in-

creasing up to 500m with increasing ZH(ML) (Fig. 11,

bottom-right panel). Since the magnitudes of KDP and

d differ considerably, we assume the inexactness of

separating a constant average KDP in the ML from total

differential phase shift should not significantly affect the

estimated height level of the d peak. Further statistics in

different climate regimes are required to clarify whether

local microphysical differences are responsible for the

differences in the heights of the maxima, or whether a

general deficiency in the simulation of theML in existing

cloud models is to blame. For example, Carlin and

Ryzhkov (2019) found not only the particle size distri-

bution but also environmental conditions impact height

and thickness of the bright band.

Overall, our analysis provides interesting relations

between descriptors of the ML and its surrounding

layers, which could be exploited to extent the VPR

technique (construction of intrinsic reflectivity profiles

from observations distorted by brightband effects) with

and to polarimetric variables (PVPR). A detailed de-

scription and example application are, however, beyond

FIG. 11. Relationship between heights of (top left) maximal ZH and d, (top right) maximal ZDR and d, and

(bottom left) minimal rHV and maximal d, as well as (bottom right) the height difference between the levels of

maximal d and minimal rHV {h[maxd(ML)] 2 h[minrHV(ML)]} vs maximal ZH.
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the scope of this paper and will be a subject of another

paper.

6. A pathway for nowcasting

Kennedy and Rutledge (2011) analyze winter storms

and linked KDP enhancements aloft with snowfall in-

tensification at the surface taking fall trajectories into

account. Bechini et al. (2013) extend their analysis and

showed statistical evidence of the relevance of KDP

signatures for short-term forecasting regardless of the

precipitation type near the surface. They found pro-

nounced correlations betweenKDP aloft (0.8) and ZH in

rain. Following these findings, we examine correlations

of KDP in the DGL [KDP(DGL)] and near-surface ZH

as a proxy for surface precipitation taking estimated fall

trajectories into account in our dataset to further ex-

plore the prognostic power of KDP.

Given the DGL at about 2 km above theML and a fall

velocity of about 1ms21 for snowflakes, lead times of

more than 30min can be expected for impacts of DGL

processes on precipitation below the ML and thus sur-

face precipitation. Since the bulk of snow precipitation

forms within theDGL (e.g., Hobbs and Rangno 1985), it

is reasonable to expect that IWC or snow precipitation

flux S in the DGL correlates with precipitation intensity

at the surface—be it snow or rain—when the falling

trajectories are taken into account. Using the measure-

ments at lower heights decreases the potential lead time,

and the information content, especially of KDP, is ex-

pected to degrade because of the decrease associated

with aggregation processes. Trömel et al. (2017) find

such correlations for horizontal winds below 10ms21 up

to the 2158C level on 16 November 2014 for lead times

of 30min. In low-wind situations, snowflakes gener-

ated in the DGL will mostly stay within the QVP cone

(about 70 km in diameter in the DGL) and allow for

lagged-correlation analyses using QVPs. For higher

winds, however, snowflakes may be advected out of the

QVP cone, particularly at lower altitudes. For the 27

long-lasting events with durations above 3.5 h we com-

puted the trajectories of snow from the 2128C height

level to the ML height using both direct wind observa-

tions from the closest radiosounding and radar-derived

velocity azimuth displays (VADs) while assuming

1m s21 fall velocity for snowflakes. The wind speed in

the DGL estimated from the nearest radiosondes

varied between 3.7 and 33.4m s21 with a mean value of

17.6m s21, while VAD-derived wind profiles, which

provide areal averages over the radar domain, vary

between 5.1 and 19.0m s21 and show a lower average

wind speed of 10.2m s21 (Fig. 12). The estimated tra-

jectories reveal that snow generated in the DGL is

advected on average 34 or 30 km off the BoXPol lo-

cation, when estimated based on radiosondes and

VAD, respectively (see Fig. 13 for the distribution of

estimated advection distances), which is in line with

investigations from Lauri et al. (2012) for the Finnish

radar composite indicating distances on the order of

tens of kilometers. Table 1 summarizes for the long-

lasting events the lagged correlation analysis between

KDP(DGL) and ZH(sfc) with and without taking ad-

vection into account, and compares the results based on

the different wind information. The correlation ana-

lyses without advection are performed from the QVPs

only.KDP(DGL)—defined as the 90th percentile ofKDP at

height levels between2108 and2208C—is correlated with

ZH at 325m above the surface for time lags between 0 and

120min. Maximum values of Spearman’s correlation co-

efficient reaching 0.79 are found for lag times up to 60min.

In the low-wind case on 16 November 2014 discussed

in Trömel et al. (2017, also included in Table 1), snow

generated in the DGL reached theMLwith a horizontal

displacement of only 2 or 6 km with wind information

FIG. 12. Empirical distribution of wind speed at 2128C height level based on both the (left) average velocity

azimuth displays and (right) nearest radiosounding in space and time of the associated long-lasting events above

3.5 h presented in Table 1.
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from the nearest radiosounding or VADs, respectively.

Correlations without advection-estimated lags are al-

ready significant and are highest (r5 0.64) for a lag time

of 5min for this case. We also correlated KDP(DGL)

withZH from the PPI scan at 18 elevation (averaged over
58 in azimuthal and 2.1 km in radial direction) at the two

estimated transections of the trajectories with the ML

using radiosoundings and VADs located 2 and 6km,

respectively, from the position of the radar, which re-

sults in similar correlation coefficients of 0.66 and 0.67

for 20-min lag time in both cases. When extending,

however, the analysis to the 27 selected cases (listed in

Table 1), we achieve higher correlations for 19 cases by

using the VAD profiles.

In our analysis, one VAD is derived for every volume

scan available every 5min during each precipitation

event. The average VAD wind profile of each event

listed in Table 1 is used for the trajectory analysis with

the variance providing a measure for the uncertainty of

the trajectory. Table 1 provides the variance of wind

speed and directions during each event averaged along

the profiles. Note that the estimated circular variance

of wind direction a,

var(a)5 12

2
4 1

N
�
N

i51

sina
i

!2

1

 
1

N
�
N

i51

cosa
i

!2
3
5
1/2

,

(15)

is bounded between 0 and 1. Even though the highest

correlations are achieved for the cases with very low

circular variance in wind direction, no clear relationship

between the Spearman correlation coefficient and the

wind variability is visible, most likely due to superposition

with other error sources (see section 6 for further discus-

sions). Figure 14 illustrates the comparison of mean radar-

derived wind profiles including the temporal variability

with the measured wind profile at the nearest radio-

sounding for the precipitations on 27 February 2015 and

12 April 2013. VAD analyses uncovers higher variabil-

ity in wind directions during the event on 27 February

showing low correlations (about 0.4) between KDP in the

DGL and ZH at the estimated advected surface location

while little change in wind direction occurred during the

event on 12 April 2013 with high correlation (about 0.8).

For the following figures, always temporally aver-

aged VADs have been used. Figure 15 demonstrates

the similarity of the time series of KDP(DGL) and the

lagged near-surface ZH at the advected position

(top and middle panel) for the low-wind case on

16 November 2014. We also compare the DGL snow

water equivalent precipitation rate S estimated from

different IWC retrievals using Eq. (9) with rainfall

rates R derived from surface reflectivities ZH at the

estimated location where the bulks of snow generated

aloft should reach the surface andwithmeasured rainfall

rates from the two nearest rain gauges (Heizkraftwerk

and Bad Godesberg Nord) located at 2.11- and 1.38-km

distance from the estimated location, respectively. IWC

retrievals are based either onKDP andZdr [Eq. (3)] or on

KDP and ZH in the DGL,

IWC(K
DP

,Z
H
)5 0:32K0:65

DP Z
0:28
H and (16)

IWC
2
(K

DP
,Z

H
)5 0:28K0:61

DP Z
0:33
H (17)

(Bukov�cić et al. 2018). For the comparison the local

ZH–RBo relationship

Z
H
5 72R2:14

Bo (18)

for the city of Bonn is used. It showed the best agree-

ment between BoXPol-derived rain rates and the local

rain gauge network between May and September 2010

FIG. 13. Empirical distribution of expected distances of snow detected at the BoXPol radar location advected by

(left) the wind observed from the closest radiosoundings and (right) the wind derived from velocity azimuth dis-

plays (VAD) for the long-lasting events above 3.5 h presented in Table 1.
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(Diederich et al. 2015b). The results are encouraging;

that is, the three polarimetric S(IWC) estimates produce

very similar results and largely follow the temporal

evolution of theRBo(ZH)-derived rain rates 20min later.

The rain rates measured at the nearest gauges, however,

are a bit higher.

Good results are also achieved for the other cases

with relatively low winds and advection distances

around 10 km and less such as the precipitation events

on 27 May 2014, 8 July 2014, or 17 August 2015. The

highest correlation, however, is achieved for the event

on 12 April 2013 (Fig. 16), which exhibits a pronounced

KDP band in the DGL reaching 0.78km21 (not shown).

Without taking advection into account the highest cor-

relation between KDP(DGL) and ZH(sfc) from the

QVPs is observed for a zero lag time with r5 0.57. With

ZH near the surface at the estimated arrival location at a

distance of 23.11 km (22.25 km in the x direction and

6.23 km in the y direction) from the BoXPol PPI at

18 elevation r is highest (0.80) for a lag time of 30min.

Again, all S(IWC) retrievals match nicely with the

observed rain rates estimated from gauges at the cor-

responding location and the ones derived from the

surface reflectivities using Eq. (18). However, the lat-

ter two show a bit higher peak values in the second part

of the rain event.

Figure 17 illustrates the results for the event observed

on 7 October 2014, the QVPs of which are presented in

Fig. 1. A good overall agreement between S(IWC) re-

trievals and the two surface rain rates is achieved except

one more pronounced deviation of RBo to higher rain

rates at 0350 UTC. Despite an estimated advection of

the snow generated in the DGL 41.10km away from the

QVP center location, KDP(DGL) and ZH at 325m with

zero lag time from the QVPs show already a high cor-

relation of 0.75. The same correlation is achieved for a

lag time of 50min when advection is taken into account.

The high correlations at very different time lags for this

TABLE 1. Dates of case studies with 3 h 30min observation length and more together with time lag of maximal Spearman correlation

coefficients between KDP in the DGL and surface reflectivity ZH(sfc) at the BoXPol location (r) and the estimated advected locations using

sounding (rs) and VAD information (rVAD), respectively. Based on the VADs calculated for each radar volume available every 5min., the

temporal variances of wind direction [Eq. (15)] and wind speed during each rain event are provided as vertical mean values. Case studies shown

in Figs. 15–17 are highlighted in boldface font; the low-wind case also investigated in Trömel et al. (2017) is listed in italics.

Without

advection

With advection, at

estimated location

Date

Period

(h:min)

Lag

(min) r

Distances/DistanceVAD

(km)

Lags/LagVAD

(min) rs/rVAD

Variance wind speed

(m2 s22)/direction

Max KDP in

DGL (8 km21)

12 Apr 2013 4:05 0 0.57 36.32/23.11 50/30 0.77/0.80 1.03/0.01 0.7
3 Jul 2013 3:55 15 0.65 22.67/20.94 75/70 0.78/0.62 1.01/0.01 0.36

6 May 2014 5:00 5 0.36 39.67/38.95 65/55 0.42/0.27 4.46/0.02 0.98

27 May 2014 4:35 60 0.56 9.63/3.96 20/120 0.49/0.74 0.47/0.15 0.3

8 Jul 2014 5:00 60 0.14 9.49/9.47 45/45 0.43/0.58 0.54/0.06 0.26

9 Jul 2014 12:35 10 0.47 13.55/28.25 45/30 0.45/0.44 3.43/0.10 0.4

26 Aug 2014 6:10 0 0.71 30.85/19.12 55/25 0.64/0.68 1.91/0.07 0.86

7 Oct 2014 3:30 0 0.75 35.91/41.10 55/50 0.67/0.75 2.29/0.02 0.75
4 Nov 2014 11:05 35 0.33 49.5/23.85 0/50 0.28/0.50 5.55/0.13 0.33

12 Dec 2014 4:35 15 0.36 55.34/35.33 95/35 0.54/0.54 1.41/0.02 0.38

16 Nov 2014 9:25 5 0.64 1.89/5.89 20/20 0.66/0.67 3.06/0.12 0.33

19 Dec 2014 4:20 0 0.28 59.74/60.59 30/30 0.52/0.40 2.03/0.01 0.23

27 Feb 2015 6:05 0 0.31 25.01/21.0 80/70 0.37/0.38 0.95/0.15 0.3

29 Mar 2015 4:25 15 0.12 76.72/63.82 95/55 0.56/0.48 1.37/0.01 0.3

2 Apr 2015 3:35 60 0.76 50.18/37.96 30/15 0.64/0.76 0.68/0.02 0.37

3 May 2015 4:10 10 0.61 33.97/36.12 70/75 0.56/0.50 1.67/0.03 0.47

22 Jun 2015 12:05 40 0.43 48.90/37.01 0/0 0.57/0.66 2.26/0.02 0.39

17 Aug 2015 5:45 30 0.66 8.57/9.99 60/55 0.60/0.72 0.10/0.03 0.3

27 Aug 2015 9:55 0 0.35 62.62/57.52 50/0 0.56/0.64 4.52/0.04 0.79

1 Sep 2015 6:40 15 0.69 36.69/33.93 35/35 0.55/0.57 2.44/0.12 0.71

16 Sep 2015 4:50 50 0.51 40.49/42.32 35/80 0.46/0.67 4.76/0.03 0.39

22 Sep 2015 3:35 0 0.46 25.17/28.50 100/30 0.41/0.43 1.18/0.03 0.58

19 Nov 2015 4:25 35 0.35 74.87/41.04 50/30 0.28/0.62 3.08/0.04 0.33

8 Dec 2015 3:40 15 0.60 25.08/14.96 120/100 0.76/0.56 0.94/0.01 0.49

11 Dec 2015 4:35 20 0.25 14.55/29.54 5/45 0.48/0.52 3.40/0.01 0.27

16 Dec 2015 4:20 10 0.38 19.52/20.18 60/0 0.11/0.15 0.93/0.04 0.41

2 Jan 2016 5:45 60 0.79 23.21/23.30 115/35 0.46/0.62 1.45/0.02 0.27
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and the previous event (12 April 2013) may well be ar-

tifacts of the periodicity of the KDP signatures (see

Fig. 1).

Only 19 of the 27 long-lasting events (.3.5 h) show an

increase in r when taking advection with radar-derived

wind fields into account (see Table 1), which might be

caused by changing wind conditions, among others, and

thus deviations from the average wind profile during the

precipitation events.

In the analyses presented in Table 1, a significant

impact of KDP in the DGL on the forthcoming surface

precipitation is assumed regardless of their magnitudes;

that is, the suggested nowcasting method has been ap-

plied to all long-lasting rain events. However, maybe

only the most pronounced signatures, in excess of cer-

tain thresholds to be determined, provide exploitable

nowcasting information with high correlations between

KDP in the DGL and surface rainfall at the estimated

location. Attenuation effects have been neglected in

these moderate stratiform events, but in single cases

embedded convection cores may result in significant

attenuation in ZH(sfc) and impact the correlation

analysis.

7. Summary and conclusions

The QVP method has been exploited to derive sta-

tistics of vertical profiles of polarimetric variables for 52

stratiform events lasting from 1h 25min to 12h 35min

observed with the polarimetric X-band radar BoXPol in

Bonn. The slant range of azimuthally averaged PPIs

measured at 188 elevation angle with 100m radial

resolution was transformed into height and provided

low-noise quasi-vertical profiles with a vertical reso-

lution decreasing with height due to beam broadening

of 100m at 2-km height and 270m at 5-km height. This

dataset allows for a reliable estimation of intrinsic

polarimetric properties of the melting layer and the

FIG. 14. VAD-derived wind profiles, their variability, and radiosoundings for precipitation events observed on

(top) 27 Feb 2015 and (bottom) 12 Apr 2013 as exemplary cases with low (r ’ 0.4) or high (r ’ 0.8) correlations,

respectively, between KDP in the DGL and ZH at the estimated advected surface location. Shown are average

VAD-based wind (left) speed and (right) direction profiles (black lines), including minimum (blue dots) and

maximum (red dots) values for all height levels observed during the events, together with the standard deviation

intervals (gray bars). The profiles measured with the nearest available radiosounding in space and time (Essen at

0000 UTC for both events) are shown for comparison (green lines).
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dendritic growth layer, on which an in-depth evaluation

of numerical atmospheric models and an exploitation of

DGL signatures for nowcasting of precipitation enhance-

ment can be based.

The derived DGL statistics reveals similarities and

also significant differences with results from other re-

gions. In agreement with the study by Griffin et al.

(2018) performed in theUnited States, we find a positive

correlation between KDP and ZH in the DGL; probably

because of our low values of ZDR, a negative correlation

between ZDR and ZH could not be confirmed. Studies

performed by Bechini et al. (2013) in Italy or Schneebeli

et al. (2013) in the eastern Swiss Alps also showed only

moderate ZDR values, which may point toward climato-

logical differences betweenEurope and theUnited States.

Kennedy and Rutledge (2011), Bechini et al. (2013)

and Trömel et al. (2017), among others, suggested

nowcasting of imminent precipitation enhancement

based on KDP bands and ZH gradients in the DGL,

which signal an increased ice crystal number concen-

tration and intense aggregation. Surface precipitation

enhancement can be expected after the time needed

for the snowflakes (or raindrops after passing the

melting layer) to reach the ground. The identification

and quantification of snow generated in the DGL re-

quires, however, the azimuthal averaging inherent to

the QVP method; it cannot be based, for example, on

3D composites because the signal is often much too

noisy. In this study, lagged correlations between KDP

in the DGL and ZH near the surface have been cal-

culated taking trajectories of the snow generated in

the DGL to the ground into account. Wind profiles

from both the nearest radiosoundings and VADs have

been used to estimate the location of potential suc-

cessive surface precipitation enhancement, and lagged

correlation analyses have been performed to deter-

mine the related lead times. Since radiosoundings

are sparse in time and space, the VAD technique,

providing wind profiles at the radar location with

5min temporal resolution, has been identified as more

suitable for the nowcasting application leading on av-

erage to higher correlations between KDP in the DGL

FIG. 15. (top) Scatterplot ofKDP in the DGL againstZH at predicted surface location 20min

later, exploiting VADs, (middle) the corresponding time series of surface ZH and KDP in the

DGL shifted forward in time, and (bottom) the RBo(ZH)-derived [Eq. (18)] and measured rain

rates 20min later at the closest rain gauges (Heizkraftwerk and BadGodesberg Nord) together

with three S(IWC) retrievals using Eqs. (3), (16) and (17), respectively, for the low-wind

precipitation event observed on 16 Nov 2014.
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and ZH near the surface. Also, a tendency for higher

correlations between KDP(DGL) and ZH(sfc) in envi-

ronmental conditions with low winds, small advected

distances, and small variability in wind direction is

observed.

Surface rain rates at the expected locations and times

have been estimated using polarimetric retrievals of the

ice water content IWC (Bukov�cić et al. 2018; Ryzhkov

et al. 2018) and the related snow water equivalent

precipitation rate S(IWC). The comparison with both

surface-reflectivity-derived and gauge-observed rain

rates showed good agreement. However, error estimates

of the polarimetric IWC retrievals are still sparse. So far,

Ryzhkov et al. (1998) compared in situ observations

with IWC(ZH), IWC(KDP), and IWC(KDP, Zdr) re-

trievals during the VORTEX experiment in Oklahoma

and obtained clear improvements using polarimetry; the

additional use of Zdr slightly improved the agreement

between the IWC(KDP) retrievals and the observations.

Other evaluation attempts using airborne X-band po-

larimetric radar and in situ aircraft measurements have

been made by Nguyen et al. (2017, 2019). Analysis of

data collected in the ice regions of tropical convective

clouds during 7 flights indicates that the IWC(KDP,Zdr),

Eq. (3), yields a root-mean-square error of the IWC

estimate of 0.49 gm23 with the bias within 6%. Because

of the unknown details of the development of S(IWC)

including accretion, riming, and evaporation along the

precipitation trajectories from the DGL down to the

surface, only correlations with measured surface rain

rates can be expected, and we can claim only these at this

stage. While we expect changes in the DGL to translate

into changes of precipitation rates at the surface—as the

correlations suggest—no conclusions regarding biases in

surface precipitation estimates based on the polarimet-

ric S(IWC) retrievals in the DGL can be drawn at the

moment. Climatological vertical profiles of snow water

equivalent precipitation rates S categorized with respect

to the synoptic and environmental conditions are re-

quired to estimate the impact of microphysical processes

on S(IWC) along the precipitation trajectories and to

project the measurements in the DGL to the surface. The

inclusion of microphysical fingerprints (e.g., Kumjian

2012;Xie et al. 2016) to detect the dominantmicrophysical

processes affecting precipitation along its fall streak (e.g.,

depositional growth/sublimation, aggregation, and rim-

ing) appears to be a promising strategy to derive the cli-

matological profiles.

Potential operational nowcasting applications of QVPs

may experience problems with capturing isolated cores of

FIG. 16. As in Fig. 15, but for the precipitation event observed on 12 Apr 2013.
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snow aloft. The azimuthal averaging in QVPs results in

different horizontal resolutions between the DGL and

the surface so that spatially isolated signatures of snow

enhancement far from the radar may not be detected at

all. The expanded QVP methodology by Tobin and

Kumjian (2017) or the columnar vertical profile (CVP)

method suggested by Murphy et al. (2017) may over-

come some deficiencies of the initial QVP technique,

because the CVP processing implies averaging data

within a prescribed sector in range and azimuth and

over multiple radar elevation scans. Hence, CVPs can

be calculated at any location within the radar range.

Figure 18 shows the radar-centric QVP time series with

CVP time series for sectors northeast (azimuths 408–608;
range 20–40km) and southwest (azimuths 2208–2408;
range 20–40km) of BoXPol for the precipitation event

on 12April 2013 (Fig. 16). Pronounced differences in the

temporal evolution andmagnitudes ofKDP are visible in

the three products. Hence, we propose to detect re-

spective DGL signatures using several CVPs within

the radar range and the calculation of hydrometeor

trajectories to the surface utilizing wind information

from the VAD technique, or numerical weather pre-

diction (NWP) models.

The combined use of QVPs with a melting-layer de-

tection strategy allows to reliably estimateZH,ZDR, and

rHV and also to separate KDP and d in the ML. Our

confidence in the d-KDP decomposition is supported by a

high correlation between KDP(ML) and the measured

rain rate at the surface (r 5 0.65; Fig. 8), moderate

correlation between KDP(ML) and ZH(ML) (r 5 0.51;

Fig. 7), and moderate correlation between ZDR(ML)

and d(ML) (r 5 0.51, not shown). However, the KDP

estimation proposed by Trömel et al. (2013, 2014)

assumes a constant KDP within the ML and thus pro-

vides only an estimate of the average instead of the

vertical profile of KDP. It represents just one possible

strategy and there is a chance that other algorithms

(so far restricted to estimateKDP in rainwhilemaintaining

its spatial variability) will bemodified for its application to

the ML in the future (e.g., Reinoso-Rondinel et al. 2018).

KDP in theML—as retrieved here—iswell correlatedwith

the near-surface rain rate and also with the cooling rate by

melting/ sublimation in the ML (Carlin 2018). We believe

that the utilization of theKDP measurements in the DGL

and ML can also help the modelers to refine micro-

physical parameterization schemes; KDP is a lower

moment of the snow size distribution than ZH, and

FIG. 17. As in Figs. 15, but for the precipitation event observed on 7Oct 2014. RespectiveQVPs

are shown in Fig. 1.
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therefore it is better suited for quantification of IWC

and mean volume diameter.

The BoXPol statistics of polarimetric variables in the

ML are well in line with the magnitudes observed in

Davos (Swiss Alps) by Wolfensberger et al. (2016). Our

empirical distribution of X band d(ML) supports earlier

studies by Trömel et al. (2014) that were based on fewer

observations—and shows considerably smaller values

relative to C and S bands. Similar toWolfensberger et al.

(2016), theBoXPol statistics show increasing reflectivities

in the ML [ZH(ML)] with increasing ML thickness. A

direct comparison, however, indicates a shift to deeper

MLs for givenZH(ML) in theWolfensberger et al. (2016)

study, whichmaybe explainable with regional differences

or the restriction of the Bonn statistics to relatively low

rain rates.

The Bonn vertical profiles of ZH below the ML

suggest impacts of evaporation; its value at the surface,

ZH(sfc), is on average 2.2 dB smaller than directly

below the ML, ZH(rain). This result differs from the

study by Fabry and Zawadzki (1995), who assumed a

constant ZH below the ML based on X-band statistics

performed at the J. S. Marshall Radar Observatory

(MRO) in Sainte-Anne-de-Bellevue in Quebec. As for

the DGL, we suspect climatological differences in the

atmospheric moisture to be responsible. In agreement

with theoretical studies by Kumjian and Ryzhkov

(2010) and Xie et al. (2016), the ZDR profile below the

ML is almost insensitive to evaporation.
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——, P. Bukov�cić, A. Murphy, P. Zhang, and G. McFarquhar,

2018: Ice microphysical retrievals using polarimetric ra-

dar data. Proc. 10th European Conf. on Radar in Meteo-

rology and Hydrology, Ede-Wageningen, Netherlands,

40, projects.knmi.nl/erad2018/ERAD2018_extended_

abstract_040.pdf.

Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-

resolution vertical profiles of X-band polarimetric radar ob-

servables during snowfall in the Swiss Alps. J. Appl. Meteor.

Climatol., 52, 378–394, https://doi.org/10.1175/JAMC-D-12-

015.1.

——, J. Grazioli, and A. Berne, 2014: Improved estimation of the

specific differential phase shift using a compilation of Kalman

filter ensembles. IEEE Trans. Geosci. Remote Sens., 52, 5137–

5149, https://doi.org/10.1109/TGRS.2013.2287017.

Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar

signatures of dendritic growth zones within Colorado winter

storms. J. Appl. Meteor. Climatol., 54, 2365–2388, https://

doi.org/10.1175/JAMC-D-15-0004.1.

Simmer, C., and Coauthors, 2015: Monitoring and modeling

the terrestrial system from pores to catchments: The

transregional collaborative research center on patterns in

the soil–vegetation–atmosphere system. Bull. Amer. Me-

teor. Soc., 96, 1765–1787, https://doi.org/10.1175/BAMS-

D-13-00134.1.

Smyth, T. J., andA. J. Illingworth, 1998: Radar estimates of rainfall

rates at the ground in bright band and non-bright band events.

Quart. J. Roy. Meteor. Soc., 124, 2417–2434, https://doi.org/

10.1002/qj.49712455112.

Steiner, M., R. Houze, and S. Yuter, 1995: Climatological character-

ization of three-dimensional storm structure from operational

radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007,

https://doi.org/10.1175/1520-0450(1995)034,1978:CCOTDS.
2.0.CO;2.

Takahashi, T., Endoh, G. Wakahama, and N. Fukuta, 1991:

Vapor diffusional growth of free-falling snow crystals

between23 and2238C. J.Meteor. Soc. Japan, 69, 15–30, https://

doi.org/10.2151/jmsj1965.69.1_15.

Tobin, D., and M. Kumjian, 2017: Polarimetric radar and surface-

based precipitation-type observations of ice pellet to freezing

rain transitions. Wea. Forecasting, 32, 2065–2082, https://

doi.org/10.1175/WAF-D-17-0054.1.

Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and

M.Diederich, 2013: Backscatter differential phase—Estimation

and variability. J. Appl. Meteor. Climatol., 52, 2529–2548,

https://doi.org/10.1175/JAMC-D-13-0124.1.

——, A. Ryzhkov, P. Zhang, and C. Simmer, 2014: In-

vestigations of backscatter differential phase in the melt-

ing layer. J. Appl. Meteor. Climatol., 53, 2344–2359, https://

doi.org/10.1175/JAMC-D-14-0050.1.

——,——, and C. Simmer, 2017: Climatology of the vertical profiles of

polarimetric radar variables at X band in stratiform clouds. 38th

Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 5,

https://ams.confex.com/ams/38RADAR/webprogram/Manuscript/

Paper320485/ExtAbstract_Troemel_AMS_Radar2017.pdf.

——, J. Quaas, S. Crewell, A. Bott, and C. Simmer, 2018: Polarimetric

radar observations meet atmospheric modelling. Proc. 19th Int.

Radar Symp., Bonn, Germany, IEEE, https://doi.org/10.23919/

IRS.2018.8448121.

Vignal, B., and W. Krajewski, 2001: Large-sample evaluation of

two methods to correct range-dependent error for WSR-88D

rainfall estimates. J. Hydrometeor., 2, 490–504, https://doi.org/

10.1175/1525-7541(2001)002,0490:LSEOTM.2.0.CO;2.

Vogel, J. M., and F. Fabry, 2018: Contrasting polarimetric

observations of stratiform riming and nonriming events.

J. Appl. Meteor. Climatol., 57, 457–476, https://doi.org/10.1175/

JAMC-D-16-0370.1.

Vulpiani, G., M. Montopoli, L. Delli Passeri, A. G. Gioia,

P. Giordano, and F. S. Marzano, 2012: On the use of dual-

polarized C-band radar for operational rainfall retrieval in

mountainous areas. J. Appl. Meteor. Climatol., 51, 405–425,

https://doi.org/10.1175/JAMC-D-10-05024.1.

NOVEMBER 2019 TRÖMEL ET AL . 2521

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/58/11/2497/4819326/jam

c-d-19-0056_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/BAMS-D-14-00105.1
https://doi.org/10.1175/JAM2508.1
https://doi.org/10.1175/JAM2508.1
https://doi.org/10.1175/2009JTECHA1238.1
https://doi.org/10.1175/2009JTECHA1238.1
https://doi.org/10.1002/2015JD023884
https://ams.confex.com/ams/98Annual/webprogram/Paper334391.html
https://ams.confex.com/ams/98Annual/webprogram/Paper334391.html
https://ams.confex.com/ams/38RADAR/webprogram/Paper321101.html
https://ams.confex.com/ams/38RADAR/webprogram/Paper321101.html
https://doi.org/10.5194/amt-12-5897-2019
https://doi.org/10.1175/JTECH-D-17-0105.1
https://doi.org/10.1175/JTECH-D-17-0105.1
https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2
https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2
http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/198_Ryzhkov.pdf
http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/198_Ryzhkov.pdf
https://doi.org/10.1175/JTECH-D-15-0020.1
http://projects.knmi.nl/erad2018/ERAD2018_extended_abstract_040.pdf
http://projects.knmi.nl/erad2018/ERAD2018_extended_abstract_040.pdf
https://doi.org/10.1175/JAMC-D-12-015.1
https://doi.org/10.1175/JAMC-D-12-015.1
https://doi.org/10.1109/TGRS.2013.2287017
https://doi.org/10.1175/JAMC-D-15-0004.1
https://doi.org/10.1175/JAMC-D-15-0004.1
https://doi.org/10.1175/BAMS-D-13-00134.1
https://doi.org/10.1175/BAMS-D-13-00134.1
https://doi.org/10.1002/qj.49712455112
https://doi.org/10.1002/qj.49712455112
https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
https://doi.org/10.2151/jmsj1965.69.1_15
https://doi.org/10.2151/jmsj1965.69.1_15
https://doi.org/10.1175/WAF-D-17-0054.1
https://doi.org/10.1175/WAF-D-17-0054.1
https://doi.org/10.1175/JAMC-D-13-0124.1
https://doi.org/10.1175/JAMC-D-14-0050.1
https://doi.org/10.1175/JAMC-D-14-0050.1
https://ams.confex.com/ams/38RADAR/webprogram/Manuscript/Paper320485/ExtAbstract_Troemel_AMS_Radar2017.pdf
https://ams.confex.com/ams/38RADAR/webprogram/Manuscript/Paper320485/ExtAbstract_Troemel_AMS_Radar2017.pdf
https://doi.org/10.23919/IRS.2018.8448121
https://doi.org/10.23919/IRS.2018.8448121
https://doi.org/10.1175/1525-7541(2001)002<0490:LSEOTM>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0490:LSEOTM>2.0.CO;2
https://doi.org/10.1175/JAMC-D-16-0370.1
https://doi.org/10.1175/JAMC-D-16-0370.1
https://doi.org/10.1175/JAMC-D-10-05024.1


White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J.

Neiman, 2002: An automated brightband height detection

algorithm for use with Doppler radar spectral moments.

J. Atmos. Oceanic Technol., 19, 687–697, https://doi.org/

10.1175/1520-0426(2002)019,0687:AABHDA.2.0.CO;2.

Williams, E., and Coauthors, 2015: Measurements of differential

reflectivity in snowstorms and warm season stratiform sys-

tems. J. Appl. Meteor. Climatol., 54, 573–595, https://doi.org/
10.1175/JAMC-D-14-0020.1.

Wolfensberger, D., D. Scipion, and A. Berne, 2016: Detection and

characterization of the melting layer based on polarimetric

radar scans. Quart. J. Roy. Meteor. Soc., 142, 108–124, https://

doi.org/10.1002/qj.2672.

Xie, X., R. Evaristo, S. Trömel, P. Saavedra, C. Simmer, and

A. Ryzhkov, 2016: Radar observation of evaporation and

implications for quantitative precipitation and cooling rate

estimation. J. Atmos. Oceanic Technol., 33, 1779–1792, https://
doi.org/10.1175/JTECH-D-15-0244.1.

2522 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 58

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/58/11/2497/4819326/jam

c-d-19-0056_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2
https://doi.org/10.1175/JAMC-D-14-0020.1
https://doi.org/10.1175/JAMC-D-14-0020.1
https://doi.org/10.1002/qj.2672
https://doi.org/10.1002/qj.2672
https://doi.org/10.1175/JTECH-D-15-0244.1
https://doi.org/10.1175/JTECH-D-15-0244.1

